以下是维基百科的解释,原地址:https://en.wikipedia.org/wiki/K-function

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Formally, the K-function is defined as

It can also be given in closed form as

where ζ'(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and

Another expression using polygamma function is[1]

Or using balanced generalization of polygamma function:[2]

where A is Glaisher constant.

The K-function is closely related to the gamma function and the Barnes G-function; for natural numbers n, we have

More prosaically, one may write

The first values are

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, … ((sequence A002109 in the OEIS)).

References[edit]

External links[edit]

Weisstein, Eric W. “K-Function”MathWorld.

 

以下是Wolfram的解释,内容来自http://mathworld.wolfram.com/K-Function.html

KFunction

KFunctionReIm

KFunctionContours

此处具体内容请查看原文

 

 

 

请使用手机”扫一扫”x

《贝叶斯方法——概率编程与贝叶斯推断》主要是讲解利用贝叶斯概率方法结合Python编程来求解一些问题。因为我注意到有一本书和研究方向是关于贝叶斯概率方法和量子力学相结合,甚至有量子贝叶斯这种新学科的产生,所以我想看看贝叶斯到底在做什么。

我没有学过概率论,据目前了解,贝叶斯概率是概率方法中的一种,但是作用很大。而且这本书印刷不错,抽空看了几页,文字言简意赅,值得读一读。